
August 2000 The Delphi Magazine 31

Effective Delphi
Class Engineering
Part 3: Skyrocketing
Property Values
by David Baer

Every so often I look across the
river at the massed forces of

the Java army and I can’t help won-
dering if my career is on track.
Maybe it’s time for a change. Java
has a lot going for it. Java books
certainly command the lion’s
share of shelf space in the pro-
gramming section of bookstores,
not to mention the number of Java
job opportunities (compared to
most everything else). But, then I
remember that the Java language
doesn’t have properties, and I
quickly return to reality. Volun-
tarily give up properties? No way!

Properties are one of the most
elegant and powerful elements of
the Delphi object model. Casual
Delphi users know them as those
convenient devices that can be
used for design-time value assign-
ments in the object inspector.
Their role in this context is highly
important, playing a major part in
the automatic component stream-
ing services for components on
forms and data modules.

But the utility of properties is
hardly limited to just components.
They’re one of the class designer’s
most potent tools. We’re going to
look closely at class properties in
this instalment and, if you’re unfa-
miliar with them, you’re in for
some very pleasant surprises.

Basic Concepts
Don’t declare public data members
in your classes: provide properties
instead.

The syntax of property declara-
tions is quite straightforward.
Properties offer a way to make
what appear to be public class data
members available to class users.

They also have an array-like capa-
bility, which we’ll explore further
on. For now let’s concentrate on
the non-array property type.

Although properties act just like
public class data items, they have
an important quality in that your
class may be much more in control
of things than it would be with a
public data member. Before we
discuss why, take a look at the
property declarations in Listing 1.

Here we see two properties
declared. MyProp1 is a publicly
accessible Integer ‘proxy’ for the
private Integer data member
FMyProp1. MyProp2 looks like a pub-
licly accessible Integer to the class
client as well, but it’s actually
accessed via two methods: func-
tion GetMyProp2 for reading the
value and procedure SetMyProp2 for
writing the value. Whether a field
or method is specified, the ‘get’
designation is formally called the
read specifier, and the ‘set’ is
called the write specifier.

The example follows VCL con-
vention, in which a field referenced
in a read and/or write specifier is
usually given the same name as the
property itself, but prefixed with
an F (for field). The read function is
usually named Get followed by the
property name, the write is named
Set followed by the property name.

The get function returns a type
matching that of the property, and
the set procedure takes a single
parameter of the same type as the
property. The example doesn’t
show it, but you can freely intermix
field and method specifiers. Desig-
nating as field-type read specifier
and a method-type write specifier
is very common practice.

If you examine the formal OP
(Object Pascal) documentation on
properties, you’ll see there are
other specifiers available in a dec-
laration: default and stored. These
are relevant for published proper-
ties of components only. In particu-
lar, you should avoid a very
common mistake: the default
specifier does not offer a conve-
nient way to initialize a property. If
you need an initial value for a prop-
erty field, assign it that value in the
class’s constructor.

It’s the availability of the read
and write methods that make
properties such a compellingly
useful tool. We’ll examine a
number of aspects of these capa-
bilities as we proceed, but let me
offer two preview examples. A read
method can return a calculated
value on demand that otherwise
might have to be continually kept
accurate if, instead, a public field
were used to provide the value. A
write method can monitor value
settings to ensure compliance with
some constraint. So, the class
client benefits from these services,
yet referencing code may be
simply and clearly written, as if
plain variables were in use.

So, you may be thinking, ‘Well, I
can see that read and write specifi-
ers are powerful, but I don’t under-
stand the guideline. If I have a
field-type read and a field-type
write specifier, what’s the differ-
ence between that and just declar-
ing a public data member instead?
They’re the same thing as far as the
class client is concerned!’

They would be, except for one
important nuance. Properties
(with either type of specifier) are

TMyClass = class
private
FMyProp1: Integer;
...
function GetMyProp2: Integer;
procedure SetMyProp2(
Value: Integer);

public
property MyProp1: Integer
read FMyProp1 write FMyProp1;

property MyProp2: Integer
read GetMyProp2
write SetMyProp2;

end;
...
// examples of use in code
if MyObject.MyProp1 = 0 then
MyObject.MyProp2 := 0;

➤ Listing 1

32 The Delphi Magazine Issue 60

not allowed to be used as var
parameters in procedure calls, and
their address may not be obtained
with the @ (address-of) operator.
Both of these operations would be
incompatible with a property
having a method-type specifier.

This is rather astute foresight on
the part of OP’s designers. Your
class may begin life with a simple
requirement for a field-type speci-
fier, and then you may later
discover that a method-type speci-
fier is needed. By restricting var
and @ usage for both specifier
types, you’re free to change your
implementation at any time with-
out breaking existing client code.

Hands Off The Merchandise!
Use properties to provide read-only
access to class data.

This could hardly be simpler or
more obviously useful. If you omit
a write specifier, a public property
becomes a read-only property to
class clients. Granted, you could
provide a public function of the
same name, and class clients
would have a semantically equiva-
lent read-only identifier for supply-
ing the value. However, using
properties for read-only items is
preferable: it’s consistent with
their use for read-write items.

A more interesting proposition
is the notion of write-only proper-
ties. If you provide a write
specifier, but no read specifier, you
have just this. Admittedly, the
need for write-only properties is
quite infrequent (but a good case
might be made for passwords, for
example).

Array Properties
Supply parameterized properties for
array-like property value access.

OP extends the capability of
properties by offering a capability
formally known as array
properties. I want to suggest also
thinking of them as parameterized
properties here, because I believe
the designation ‘array’ is conceptu-
ally limiting. Certainly, array
properties can offer array-like
access to class information, but
there’s much more they can do.

Listing 2 shows the declaration
of a read-write array property

(omit the write specifier and we
have a read-only property).
There’s nothing mysterious here,
you should be able to deduce
what’s intended and required just
by looking at the declaration.

There are several important
things to note. First, array proper-
ties have one or more parameters
that are often simply numeric indi-
ces in one or more dimensions.
We’ll see in the next item that there
are more interesting parameter
capabilities available than array-
like subscripting. The other impor-
tant point is that array properties
may only be accessed using
method-type specifiers. The sim-
pler field-type specifier available to
non-array properties is not an
option in this case.

Array property read and write
specifiers are straightforward. The
read method requires a parameter
list of the exact types (and in the
same order as) the property
parameter list. The write method
requires that same parameter list,
to which is appended a parameter
for the value being assigned.

Array properties may be used in
the obvious way: the class has an
array of values which it wants to
make public for read or read-and-
write purposes, and we can use an
array property to do this. Until
Delphi 4, we had nothing but fixed
length arrays available in the lan-
guage. These were normally of
little use to class designers due to
lack of flexibility arising from the
fixed length. As a result, class

writers learned to rely on lists,
which could be dynamically sized
to accommodate their needs.

The TList class (in the Classes
unit) offers an array property
Items for easy, subscript-like
access to items in the list. I recom-
mend you study this class (be fore-
warned that it does not use the
conventional property naming
conventions I mentioned earlier),
and not just to observe how it uses
properties. TList is a utility class
that you’ll likely find yourselves
frequently using as an internal
helper class. As such, you cannot
know it too intimately. With
respect to array properties, you
will often want to ‘surface’ the
items in internal list objects as
public properties for your class
clients to access.

Values by Name
Use strings or other non-integer
values as property parameters to
give your class elegant ease-of-use.

Parameterized properties get
really interesting where the
parameters are something other
than subscripts. In particular, use
of a ‘name’ for the parameter can
be very convenient to your class
users. Listing 3 has an example.

Rather than require the user to
look up a subscript based on the
name in some table prior to
accessing a property value, the get
method provides the service itself.
Note in the example that const is
specified in both the property
parameter list and the read and

private
function GetPixelColor(X, Y: Integer): TColor;
procedure SetPixelColor(X, Y: Integer; Value: TColor);

public
property PixelColor[X, Y: Integer]: TColor
read GetPixelColor write SetPixelColor;

...
// examples of use in code
MyBitMap.PixelColor[I, J] = clBlack then
MyBitMap.PixelColor[I, J] := clWhite;

private
function GetItem(I: Integer): Pointer;
function GetItemByName(const Name: String): Pointer;
procedure SetItem(I: Integer; const Value: Pointer);
procedure SetItemByName(const Name: String; const Value: Pointer);

public
property Item[I: Integer]: Pointer read GetItem write SetItem;
property ItemByName[const Name: String]: Pointer
read GetItemByName write SetItemByName;

...
// examples of use in code
if MyList.ItemByName['Fred'] = nil then
MyList.ItemByName['Ethel'] := nil;

➤ Above: Listing 2 ➤ Below: Listing 3

August 2000 The Delphi Magazine 33

write method to optimize perfor-
mance. The compiler demands
consistency here (const specified
in both the property and method
parameters), just as it would
between method declaration and
implementation parameter lists.

Parameterized properties using
non-subscript type parameters
bring us to a point where we can
consider an interesting possibility.
When we think of array access, we
ae usually dealing with non-sparse
arrays. There’s an entry there for
each item in the low-to-high range
in each dimension. But, with array
properties, we needn’t limit our-
selves to this.

Consider instead the following
scenario. We have a ‘dictionary’
lookup property, using a word (eg
a name) as an association to a
value. In an assignment to the
property, if the name exists, we
assign it the new value. If it does
not exist, we add a new entry to the
‘dictionary’. For retrieval, we
return the value of an item when
found, and either return some
innocuous value when it’s not
found or raise an exception, as
appropriate to the problem we’re
solving. Powerful stuff, is it not?

Labour Saver For Your Users
If you have one or more array prop-
erties, consider designating one of
them as the default property.

If you followed my advice and
studied the declaration of TList,
you may have noticed the Items
property was declared as default:

property Items[Index: Integer]:
Pointer read Get write Put;
default;

First of all, this is not to be con-
fused with the default specifier I
previously cautioned you against
misinterpreting. The reserved
word default has two uses in
property declarations. In this
second one (where default
appears after the semicolon in the
property declaration), it means
that the class client code can refer-
ence property values using a
shorthand notation.

By declaring a default property,
you allow your class users to

access that property with an
object reference, followed by the
parameters. The property name
need not be given. Thus, if MyList
has a reference to a TList, the two
statements below are equivalent:

MyList.Items[0] :=
MyList.Items[1];

MyList[0] := MyList[1];

One final thought. The default des-
ignation is only allowed for array
properties. If you don’t immedi-
ately understand the reason for
this, consider what code referenc-
ing a non-array default property
value would look like and pretend
you’re the compiler.

Consistency
Use common sense and try to be con-
sistent when deciding to supply a
parameterized function vs. a
parameterized read-only property.

As suggested earlier, a non-array
read-only property and a parame-
ter-less function of the same name
would be semantically equivalent
to your class users in a practical
sense. If you changed from one to
the other your users would be
unlikely to notice the difference.

This is not the case with read-
only array properties versus
parameterized functions. Clearly,
the former require brackets delim-
iting the parameter list and the
latter need parentheses. Of course,
if your users make a mistake and
code the wrong delimiters, it
shouldn’t take them too long to
determine what’s needed to
correct the problem.

But this does bring us to what
I’ve found to be an occasional
dilemma. Some kinds of informa-
tion clearly are appropriately
made available via properties. The
Items property of the TList is a
perfect example. Items is a property
of a list in the general sense of the
word (ie, an attribute or current
characteristic), and formalizing
that quality by declaring it a prop-
erty is entirely reasonable.

For other kinds of information
that a class might provide, supply-
ing it via properties can be con-
trary to the spirit of things. A class
may well have access to data that

allows it to supply information, but
that information may not be
appropriately considered an
actual property (again, in the more
general sense of the word).

Sooner or later, you’ll probably
run into a dilemma where the infor-
mation is in a grey area. It’s kind-of,
sort-of, a property of the class, but
it’s not clearly so. Let me cite an
example from a real experience.

I once designed a container class
that was a kind of a list, but it had
two ‘views’. Items in the container
could be filtered, and filtered items
would not be seen by collaborating
classes. Unfiltered items, then,
were visible items in one view. The
other view was the physical view,
where all items were present and
accessible.

Class client code usually dealt
exclusively with one view or the
other. So, I provided the proper-
ties Items and VisibleItems. There
were occasions, however, where
client code needed to map from
one view to the other.

To accommodate that need, I
supplied two mapping functions:
IndexOfVisibleIndex and Visible-
IndexOfIndex. Should these have
been properties? I still don’t know
if I made the best choice. To me,
this is one of those ‘grey area’
cases and arguments could be
made for supplying this informa-
tion via properties or functions.

So, although I cannot offer a
nice, easily remembered guideline
here, I would suggest that you at
very least try to stick to a course
that’s consistent. If you vacillate,
you’ll likely end up with some
frustrated class users.

Tough Love
Don’t hesitate to incorporate appro-
priate safety measures in your set
methods to assist your class users in
staying out of trouble.

One of the great things about a
number of modern programming
languages is the seamless support
for exceptions. OP is no slacker in
this area. Exceptions can (and fre-
quently should) be used liberally
to protect your class users from
their own errors. Certainly, one of
the main venues in which excep-
tions are indispensable is in write

34 The Delphi Magazine Issue 60

specifiers. If the class user can
assign a property value that will
cause a class instance to malfunc-
tion, the class needs to guard
against the possibility. Exceptions
are usually the best way.

They are especially appropriate
in the write methods of array
properties. We’ll often want to
check that valid parameters (such
as index subscripts) are being
specified. This brings us to several
design tradeoff decisions. How
much protection is needed in rela-
tionship with the expected perfor-
mance of class services? Bounds
checking consumes CPU cycles
and, if optimized performance is
high on the list of requirements, we
must be thoughtful about this.

A related concern has to do with
the quality of the information
returned in an exception message.
If we have a subscripted (or
indexed, if you prefer) property,
this will frequently be there for
providing access to items in some
internal list (a TList, TStringList,
etc). Should we do a check on the
index in our class when the inter-
nal helper class will duplicate that
test? The answer returns us to the
issue of performance expectations
versus class usability.

In general, the more specific an
exception message is, and the
more pertinent the information
included, the better it will be for
your class users in debugging their
code. In the case of an internal list,
they shouldn’t be required to know
the implementation details of your
class. If they need to diagnose an
exception raised in an internal
helper class, something is wrong.

So, what to do? My first inclina-
tion is usually to ignore the perfor-
mance requirements and be
especially generous in providing
plenty of checks with nicely
detailed exception messages. My
motives aren’t exactly unselfish. In
my experience, the more informa-
tion a user gets, the better the
chance that your class will not be
accused of having bugs.

Beyond that, it’s stunning how
fast ordinary business computers
are today. Protection schemes like
bounds checking can frequently be
incorporated with no observable

performance degradation. Further-
more, there are relatively few
cases where performance sur-
prises occur. If a class is perfor-
mance-critical, you usually know
that early in the design stage. If it’s
not identified as an issue, then
don’t worry about the overhead of
your protection strategy.

Where you do have performance
concerns that merit extensive opti-
mization efforts, there are other
solutions: conditional compilation
(I recommend this if you like
unreadable code), Delphi asser-
tions, etc. The strategy may
depend on whether your class
users will have access to the
source. If they do, you’ve got many
ways to address the problem.

But the main point is that this is
normally not a major concern to
begin with. For the most part, don’t
worry about the overhead of pro-
tection strategies. When it comes
to class users, no news is usually
good news.

Cool Running
Property read and write methods
both offer great opportunities for
introducing optimizations in your
class; take advantage of them.

Let’s begin with write methods.
Setting a single property value will,
in some cases, have a pronounced
effect due to collateral state
changes in your class. An easy opti-
mization (used often in the VCL) is
to test the new value against the
current one. If the new value equals
the old, the write method can bow
out then and there, and a lot of
potential work can be avoided.

On the read side of things, we
can employ a just-in-time alloca-
tion strategy for classes that may
sometimes consume expensive
resources, but those resources are
not needed by all instances of the
class. Again, the VCL uses this to
good effect, and it’s instructive to
consider how it does.

Window controls require han-
dles to be operational. Although
these are less of a precious
resource in the 32-bit world, they
are still not free. But Delphi
originated during the waning days
of 16-bit Windows, when well-
behaved programs needed to be

conservative in doling out han-
dles. Enter the TWinControl.Handle
property read method to offer a
helping hand! Since not all win-
dows end up in a state where they
require a handle (for a variety of
reasons we don’t need to get into)
deferring the allocation until the
handle is actually requested can
keep ‘expenses’ down.

This method (edited slightly
from its current form for sake of
clarity) is shown in Listing 4: it
could hardly be simpler.

Another strategy for reducing
resource consumption is that of
caching. You can use your prop-
erty read method to draw from a
pool of pre-allocated resources
(objects, memory blocks, or
whatever). You may want to allo-
cate new ones if the current pool is
exhausted or wrest ownership
from another instance that is the
least recently active. The best
approach will depend upon the
nature of the problem, and the
possibilities are many.

Private Property
Non-public properties can be of use
to you in your class implementation;
feel free to use them as such.

This is an extension of the previ-
ous item, and although briefly
stated, it’s important enough to
merit its own guideline. As you just
saw, using properties with under-
lying access methods can allow
simple, concise code to perform
mighty deeds. This capability isn’t
restricted to public services. You
may use non-public properties
internally in your class to avail
yourself of these benefits in the
class’s implementation code.

Labour Saver For You
Save yourself some coding by using
indexed Get and Set methods.

Another way to save yourself
some implementation effort is sup-
plied in the form of ‘shared’ read
and write specifiers. The compiler
allows you to specify read and
write specifiers that are used by
multiple properties. The only
requirement is that you supply a
unique number using the index
specifier in each property
declaration. In generating code to

August 2000 The Delphi Magazine 35

call the read or write methods, the
compiler inserts that number in
the parameter list for you automat-
ically. For a formal description of
the syntax, refer to Delphi help,
looking up ‘index specifiers’.

But you can probably just
examine the example given in
Listing 5 to fully get the idea. In
that, we have class TMyBars that
maintains four internal lists:
FooBars, CandyBars, SandBars and
WineBars. Each list has a uniquely
named items and count read-write
property. Using index specifiers,
we can get by with just four
methods, rather than the sixteen
that would otherwise be required.

Class Discrimination
For class type properties, use write
methods to assign as much (or as
little) of the ‘from’ object as you
need.

Those of you who read Brian
Long’s Delphi Clinic in the April
2000 issue have a head start on this
tip. Brian explained how property

assignments often work for
TStrings-derived property types.

When your class has a property
which is a class type (ie, the
property can be used as an object
reference), there are two main
choices of how you will want the
assignment to work. The first way
is where the property is being used
to maintain a reference to an
external object. You will see many
examples of this in the VCL where
components collaborate (a TDBEdit
object has the DataSource property
of type TDataSource, for example).

In this case, we’re not interested
in acquiring the contents of the
‘from’ object, our object just needs
access to the other. The require-
ments for the property value
assignment are straightforward
enough. But this scenario does
suggest that a notification protocol
be put in place wherein your object
is informed if destruction of the ref-
erenced object occurs. You don’t
want your object attempting
access after the other is no longer
in existence.

The other main case is where
your class uses an internal object,
and an assignment to the property
requires copying some or all of the
state of the ‘from’ object (or setting
the internal object to a virgin state
if the assigned value is nil). A VCL
example of this case is the Font
property of various controls. The

font is always an internal helper
class in this situation, and assign-
ment to the property copies the
‘from’ settings into the internal
TFont object.

Here you have great latitude in
how much you wish to pull from
the assigned object. Invoking the
Assignmethod will be exactly what
is needed in many cases, but you
are not limited to that. In fact, if the
‘from’ class is the same type (or is
even defined in the same unit), you
are not even limited to copying
public data: your property write
method may access the most
intimate of details of the ‘from’
instance. As the class designer this
is completely your call.

A third possibility exists,
although it is less common. In this
scenario, the assignment effec-
tively transfers ownership of the
‘from’ object to your object. The
‘from’ object remains an external
one, but your object assumes the
responsibility of freeing the
assigned object when your object
is destroyed. For this type of
assignment, it would be necessary
to ensure that the write method
enacts whatever protocol is
needed to transfer the ownership.
An object having two owners is
of course an Access Violation in
waiting, so an existing owner

function TWinControl.GetHandle:
HWnd;

begin
if FHandle = 0 then begin
if Parent <> nil then
Parent.HandleNeeded;

CreateHandle;
end;
Result := FHandle;

end;

➤ Listing 4

TMyBars = class
private
FooBars: TList;
CandyBars: TList;
SandBars: TList;
WineBars: TList;
function GetBarCount(Index: Integer): Integer;
function GetBar(Item: Integer; Index: Integer): Pointer;
procedure SetBarCount(Index: Integer; Value: Integer);
procedure SetBar(Item: Integer; Index: Integer;
Value: Pointer);

public
property FooBarCount: Integer index 0
read GetBarCount write SetBarCount;

property CandyBarCount: Integer index 1
read GetBarCount write SetBarCount;

property SandBarCount: Integer index 2
read GetBarCount write SetBarCount;

property WineBarCount: Integer index 3
read GetBarCount write SetBarCount;

property FooBar[Item: Integer]: Pointer index 0
read GetBar write SetBar;

property CandyBar[Item: Integer]: Pointer index 1
read GetBar write SetBar;

property SandBar[Item: Integer]: Pointer index 2
read GetBar write SetBar;

property WineBar[Item: Integer]: Pointer index 3
read GetBar write SetBar;

end;
...
function TMyBars.GetBar(Item, Index: Integer): Pointer;
begin
case Index of
0: Result := FooBars[Item];
1: Result := CandyBars[Item];
2: Result := SandBars[Item];

else
Result:= WineBars[Item];

end;
end;
function TMyBars.GetBarCount(Index: Integer): Integer;
begin
case Index of
0: Result := FooBars.Count;
1: Result := CandyBars.Count;
2: Result := SandBars.Count;

else
Result := WineBars.Count;

end;
end;
procedure TMyBars.SetBar(Item, Index: Integer;
Value: Pointer);

begin
case Index of
0: FooBars[Item] := Value;
1: CandyBars[Item] := Value;
2: SandBars[Item] := Value;

else
WineBars[Item] := Value;

end;
end;
procedure TMyBars.SetBarCount(Index, Value: Integer);
begin
case Index of
0: FooBars.Count := Value;
1: CandyBars.Count := Value;
2: SandBars.Count := Value;

else
WineBars.Count := Value;

end;
end;

➤ Listing 5

36 The Delphi Magazine Issue 60

needs to have its ownership
revoked.

Next Time
After a month’s rest, we’ll bravely
venture out of the shallow end of
the pool, exploring the deep
waters of inheritance and briefly
encounter polymorphism.

David Baer is Senior Architectural
Engineer at StarMine in San
Francisco. Although a man of
property, he almost never feels
like appending ‘Esq’ to his
signature. Contact him at dbaer@
starmine.com

	Basic Concepts
	Hands Off The Merchandise!
	Array Properties
	Values by Name
	Labour Saver For Your Users
	Consistency
	Tough Love
	Cool Running
	Private Property
	Labour Saver For You
	Class Discrimination
	Next Time

